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It was shown in [1] that in the presence of nonmonotonic heat
release the detonation mode in an unbounded medium can be inde-
terminate. Certain properties of the number of detonation modes and
their stability with respect to transition from one mode to another were
also investigated there.

The lateral scattering of products of detonation affects the lat-
ter's rate in a manner qualitatively similar to that of heat losses or of
an endothermic reaction. Noting this similarity and the results cited
in [11, we consider the case of monotonic heat release on the assump-
tion that lateral scatrering is the only source of losses.

The effect of lateral scattering on the rate and stability of det-
onation, as well as the existence of a critical diameter of the charge,
was first confirmed experimentally by Khariton and Rozing {2,8]. The
critical diameter and its dependence on specific properties of an ex-
plosive were subsequently investigated in numerous papers (see [4,7]
and other publications). Another interesting aspect of the link between
the stability of detonation and the scattering of reaction products is
the low detonation rate observed under certain conditions [4,5,8-12].
This phenomenon has not yet been fully explained. There is no doubt
that the low detonation rate is, if not in all cases at least in the ma-
jority of them related to two or more heat-release stages taking place
at substantially different rates [5,10-13]. However, the question of
the character and limits of stability as well as of the low sensitivity of
the detonation rate to variation in external parameters [10,11] re~
mains unanswered. Attempts at a theoretical explanation of the low
detonation rate were made by Eyring et al [14], but their results con-
tradict experimental data {11,12] (see also §3 below, and [15]). The
problem of indeterminacy of the detonation rate has been partially
considered by Schall [16]. A eritical review of [16] appears in [1].

In connection with all this it is interesting to investigate the
total number of detonation modes and their stability during transition
from one mode to another. In view of the recently revealed instability
of a plane (smooth) detonation front [17], we point out that in the
following we consider the stability of any detonation front which is
steady-state on the average. The detonation rate, expressed in terms
of the heat of reaction, is the same as that of a smooth front, It is
known that "turbulent pulsations” of an uneven front alter the deto-
nation rate only very slightly [18,19], and that such alterations are
not always present [20]. Unevenness of the front also does not con-
tradict the concept presented in [3] of a relation between the crit-
ical diameter and the width of the reaction zone [6,7]. The quan-
titative expression of the criterion given in [3] depends on specific
properties of the explosive. In the case of high activation energy the
induction time for large diameters close to the critical one increases
very greatly in the direction from the charge axis toward its periphery,
owing to considerable curvature of the front. Under these conditions
the effective induction time can be considerably longer than for a
straight shock wave [21].

The problem is formulated in an approximation to a given
streamtube shape in ‘§1. which also deals with investigation of the
general properties of detonation modes in a bounded medium. These
properties are illustrated in §2 for a simple model of detonation with
one or two irreversible chemical reactions. Section 3 is devoted to
discussion of the results and to the conclusions.

Systematic mathematical analysis of detonation with lateral
scattering is extremely difficult. This explains the present lack of a
rigorous theory for non-one-dimension detonation, in spite of num-
erous investigations of this problem. Several existing approximate
theories [14,22-25] give a qualitatively correct description of in-
crease in the detonation rate with increasing diameter of a cylindrical
charge or with decreasing front curvature [26].

However, knowledge of the exact pattern of expansion of the
explosive in the reaction zone is not necessary for the analysis of the
number of modes and their stability. The mode and stability of de-~
tonation depend on the relationship between the rate of expansion
and that of the chemical reaction. Both of these rates are defined
for a given'charge diameter by the shock-wave intensity and by the
complete range of gas-dynamic parameters behind the compression
shock. The rate of a chemical reaction is usually much more af-
fected by the shock~wave intensity than by the effect of lateral
scattering. Consequently, in investigations of the number of deto-
nation modes and of their stability, it is natural to consider the
expansion law (the shape of the streamtubes) as given and independent
of the wave intensity, except in the case of weak waves (see below).
Any relatively minor dependence of the streamtube form on the wave
intensity result only in a small variation of the detonation rate, while
the functional relationships remain qualitatively unchanged.

§1. Let us consider a detonation process in an in-
finitely long cylindrical charge and assume that the
streamtube cross section ¢ is a given function of the
distance x from the shock-wave front initiating the
detonation.

With other conditions equal, the velocity of a det-
onation wave is the higher, the greater is the heat
release and the smaller the losses from lateral scat-
tering in the subsonic zone of flow. In this respect the
above phenomenon is similar to the detonation process
in the unbounded medium in the presence of a nonmon-
otonic chemical reaction. However, this problem dif-
fers significantly in that it results in non-one-dimen-
sional motion, and thig leads to a different expression
of the laws of conservation. In particular, the part-
icle trajectory in a steady-state shock wave in the
pressure-volume plane is no longer defined by the
Michelson straight line, and the detonation-wave vel-
ocity cannot be determined from the known condition
of tangency to the adiabatic curve of maximum heat
release by the detonation. For the same reasons los-
ses due to lateral scattering do not result in any ap-
preciable heat losses.

Nevertheless, continuous function f(D) of the shock~
wave velocity can be introduced, as in [1], for a
bounded medium. When equal to zero, this function
defines the velocities Dy of steady-state modes, and
when different from zero, it indicates the direction of
development of the nonsteady -state process. To prove
this we consider a continuity equation together with
an Euler equation for steady-state motion in a system
of the wave-front coordinates

Dp, = ups = j = const,
udu/de = = dPlpdx, s = o (z) / o (O). (1.1
Here D and u are, respectively, the gas velocities

in front of and behind the wave (D is the detonation-
wave velocity in a laboratory system of coordinates),
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p1 and py are the gas densities in front of and behind
the wave, and P is the pressure. We assume the gas
motion to be adiabatic [4].

We denote by aq(0 = o = 1), that part of the heat g
released during an irreversible chemical reaction up
to a given instant of time, and we represent pressure
variation in an adiabatic process with an irreversible
chemical reaction in the form

dP = ctdp + (9P / o), do, (1.2)

where c is the speed of sound under conditions of a
frozen irreversible reaction.
Combining (1.1) and (1.2), we obtain

5 oy dp 1 /APy du ds

For a detonation process to be steady the right-
hand side of Eq. (1.3), subsequently denoted by ¥,
must, at the Jouguet point

u=-c (1.4)
satisfy the equation
P =0. {1.5)

Equations (1.4) and (1.5) define the velocity D of a
self-sustaining detonation wave. Equation (1.5) with
Eq. (1.4) is usually formulated as the condition for
compensation of pressure increase during the re-
action by decrease with lateral scattering at the Jou-
guet point [5, 14]. For a detonation in an unbounded
medium the relation ds/dx =0 and the simultaneous
fulfillment of Eqs. (1.4) and (1.5) indicates the known
condition for completion at the Jouguet point of an
irreversible monotonic reaction (or the maximum
heat release in a nonmonotonic reaction) [4, 27].

We introduce into our analysis the following func-
tion of the shock-wave velocity:

1 (0P\ da  , ds
F(D) =F<5§>pﬂ—c b (1.6)

Here X, is a quantity dependent on D and equal to
the smallest of the two values of x; and x,, defined as
follows: x; is the point x =0 at which u = c; x; is the
point corresponding to the smallest x =0 at which ¥=
0, and such that ¥ < 0 when x, (if the point x; does not
exist, by definition xy = xy; if ¥ =0 for all x= 0, ob-
viously, xy =0).

Function (1.6) exists and can be determined for any D and a
given law s(x) of streamtube expansion by our solving the Cauchy
problem for the system of ordinary differential equations (1.1), which
must be supplemented by equations of adiabaticity (or by the Ber-
noulli equation) and of chemical kinetics. By virtie of continuous
dependence of the solution of the Cauchy problem on the initial
conditions, this function is continuous and has everywhere a first der-
ivative, except at points of wransition from Xy = Xy to Xy = x;. At
these points F(D) has breaks and, consequently, two derivatives: f'
and f}.

A property of f(D) at small D close to the speed of sound in an
unperturbed gas should be noted. In this region the streamtube shape
cannot be considered in any approximation as independent of D, if a
correct picture of the flow is to be obtained. This is so because a
streamtube which has passed through the maximum pressure of the
sonic perturbation front does not expand at all. In solids this is due
to the natural strength of the material, and in liquids and gases to
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constraints imposed in experiments by the containers. Moreover,
under certain conditions the dynamic resistance of a liquid can have
a similar effect. In an infinitely weak wave the sonic point is reached
for infinitely low expansion existing behind the leading edge, i.e.,
as we see from (1.3) infinitely small heat release so that a chemical
reaction at the sonic point does not result in lateral scattering of
material. Thus, in the region of reduced pressure we have for the
chemical peak of a weak detonation wave ds/dx = 0, while in the
case of an irreversible chemical reaction do/ dx is positive. Hence,
if heat conduction and friction at the walls are neglected, at the
weak wave limit we have

f(D)>0. a.m

If conditions (1.4) and (1.5) are fulfilled simultan-
eously

Fy=0, (1.8)

and, conversely, if condition (1.8) is fulfilled, from
the definition of f(D) and from (1.3) it follows that (1.4)
and (1.5) are valid at the point xy. Consequently, Eq.
(1.8) defines the parameter D of steady-state det-
onation modes, whose number is equal to the number of
positive real roots D of Eq. (1.8). ]

"~ We shall clarify the relation between f (B) and the
stability of steady-state modes. Let there be a cer-
tain steady-state mode D;. To investigate its stabil-
ity we assume that owing to random perturbation the
shock-wave intensity is increased by a small incre-
ment 6D >0, and that the state of the gas in the in-
terval 0= x < x has changed correspondingly, so

that in this interval Eq. (1.3) is fulfilled, while in the
remaining region x >x;, the state of gas at the instant
of this perturbation has not changed. The new value of
D =D, +6D will not, generally, be a root of Eq. (1.8),
i.e.,

f(Dy + 8D) == 0. (1.9)

This means that only one of conditions (1.4) and
(1.5) is fulfilled at point Xy, and that %y is equal to either
Xy OT Xj.

If %y =Xy, xq is the Jouguet point at which with con-
dition (1.9) fulfilled we have

¥ > 0. (1.10)

From (1.4) and (1.5) it also follows that
F(D; + 6 D) >0. (1.11)

Inequality (1.10) means that at the Jouguet point is
released at a higher rate than that required to sus-
tain steady-state mode D; + 6D, as a result of which
the wave will be intensified [1]. (In this case a steady-
state solution at the point x; contradicts irreversibil-
ity of the chemical reaction. A detailed gasdynamic
pattern of the intensification of perturbations is not
considered here). Thus, in the case of (1.11) the per-
turbation of a steady-state mode is intensified.

If with condition (1.9) fulfilled, we have x5 = x5, Te-
lation (1.5) is valid at point x5, but ¢ >u, hence

f (D + 6 D)<C0. (1.12)

We see from Eq. (1.3) that in this case the mater-

_ial is being compressed {(dp/dx >0) in the subsonic

part of the region x > x¢. Hence from the first ex-



pression of (1.1) and from the condition of stream-
tube expansion it follows that u? decreases with in-
creasing x at a rate more rapid than 1/p?. Therefore,
for a steady-state flow to become sonic or supersonic
with increasing x an even more rapid rate of decrease
of c2 is always necessary, so that in the adiabatic pro-
cess 8(p2c?)/op < 0. Yet for all materials capable of
propagating compression shock waves 8(p2c2)/6p <0.
This derivative is of the same sign as the second adi-
abatic derivative of 1/p (used in the theory of shock
waves) with respect to pressure.

Thus for D = D; + 6D steady-state flow is subsonic
throughout and does not satisfy the condition for vac-
uum at X =, In a perturbed mode the transition to
vacuum occurs in the non-steady-state rarefaction
wave which in propagating through the subsonic flow,
‘overtakes the front, and weakens it. Such perturbed
motion is a supercompressed detonation wave [4]. In
other words, the generated perturbation 6D >0 is at-
tenuated when condition (1.12) is fulfilled. It can be
shown in a similar manner that a perturbation of
opposite sign (6D >0)is intensified in the case of (1.12)
and is attenutated in the case of (1.11).

The stability condition obtained is expressed in a
more concise form (unique for any sign of 6D) as
follows. A detonation wave propagating at the velocity
Dj is stable (as regards transition into another steady-
state mode) with respect to small perturbations, if

@f/dD) + <0, D = D,, (1.13)

and it is unstable when the sign of inequality (1.13) is
reversed.

The two derivatives at the points D; are of the same sign. In
fact, if the function f(D) with a break at the point Dj changes its
sign when passing through that point, the derivatives f ! and f;
will be of the same sign. If, however, f(D) does not change its sign,
%y s one and the same differentiable function of D (% or %,) on both
sides of Dj, and, consequently, the function f(D) does not have a
break at the point Dj. In the following analysis it is not the absolute
values of (D) for all D that are important, but rather its continuity,
itg vanishing at points (1.8), and the sign of its derivatives at these
points. The selection of a function with such properties is nonunique.
The function % f(D), where % is any continuous piecewise differen-
tiable positive function of D, can be taken as {(D). The derivative
of n f(D) can be made unique at the points Dj by a suitable selection
of %. No distinction will, therefore, be made in the following between
f1 andf}, and f(D) will be represented in all diagrams by a smooth
curve.

The fact that criterion (1.13) was derived in the
analysis of a special kind of perturbations is im-
material and does not limit the generality of (1.13)
(see §3 of [1]).

We shall prove two statements defining the prop-
erties of solutions of (1.8).

1) Let at the points Dj satisfying (1.8)

df /dD == 0. (1.14)
We also assume that the thermodynamic functions
of the reacting material do not have singularities
leading to breaks of the detonation adiabatic curve.
We prove that the maximum Dmax and the minimum

Dynin roots of Eq. (1.8) describe modes which are
stable as regards transition to other modes (1.8). The
proof of stability of the mode D, .. is derived by con-
tradiction, as was done in [1]. Let us assume that the
solution Dy, is unstable, i.e., that at the point D;
the converse of inequality (1.13) holds. This means
that for small positive increments of 6D

F(D)>0. (1.15)

Yet do/dx remains finite with unlimited increase of
D, while c2ds/sdx increases infinitely. (This state-
ment is meaningless, if ds =0 is assumed a priori an
unbounded medium). Passage to the limit of an un-
bounded medium can be achieved with a nonunique
definition of the function f(D) and by our multiplying
the latter by sdx/s. However, this is unnecessary,
since the stability of Dy, 43¢ is an unbounded medium
was proved in [1]). Hence it follows that for rather
large D > Dy, 4 the inequality sign in (1.15) is re-
versed (a detonation wave as D~ necessarily be-
comes supercompressed). By virtue of the contin-
uity of f(D) this feature proves the existence of a sol~
ution of (1.8) for D > Diax+ This contradicts initial
conditon and proves the stability of the mode Dmax.

The stability of the mode Dy, iy is proved in a sim-
ilar manner, if property (1.7) of the funection F(D) for
small D is taken into account.

2) An opposite kind of stability corresponds to the
two adjacentroots D; and D; , | of Eq. (1.8) with lim-
itation (1.14), i.e., if the mode at the point D; is un-
stable (stable) it is stable (unstable) atthe point Dj + .
This property of solutions of (1.8) follows immediately
from criterion (1.13), and from the continuity and
single-valuedness of the function f(D) (Fig. 1).

From the properties defined in 1) and 2} together
with the same nonessential limitation (1.14) follows
that: a) Eq. (1.8) with property (1.7) taken into account
has an odd number of solutions; b) is the solution of
(1.8) is unique, it is stable; ¢) if there are three sol-
utions, the solutions with maximum and minimum Dy
are stable, while the third solution is unstable; if
there are five solutions in all, three of these are
stable.

These properties of solutions of (1.8) formally
coincide in accuracy with the properties of steady-
state modes in an unbounded medium in the presence
of nonmonotonic heat release [1]. However, here these
properties, and in particular those of Dmin, are of a
different physical nature (see the discussion in §3).

§2. Let us consider quantitatively two simple models
of detonation with one and two different rates of heat
release, and with lateral scattering taken into consid-
eration. We assume, in [22], that there is little
streamtube expansgion in the steady-state subsonic
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region. In this approximation, which will be used
from formula (2.9) onward, the streamtube radius r,
equal prior to expansion to the charge radius ry, is
pi'oportional to x

riro=1+4ax/d, 2.1)
d =2r,, a = const, ax,/d << 1. 2.2)

(1t is clear a priori that inequality (2.2) is all the
better fulfilled the larger is d. It can be proved by
means of the solutions to be derived later, that it is
permissible to use (2.2) for d decreasing down to the
critical diameter.) Furthermore, we assume that the
adiabatic exponent y of the gas is constant.

We begin by considering the case of a single irre-
versible chemical reaction of the monomolecular kind,
whose rate is defined by the equation

da/dz =L (D) (1 — a),
@(0)=0, 1>a>0. (2.3)

This equation, weakly dependent on D, is obtained
in an approximation to within the multiplier if the con-
stant of the reaction rate depends only on the shock-
wave intensity. The assumption L = L(D) corresponds
to the known concept of induction time and of subse-
quent fast reaction, as well as to the approximate ex-
pression for the reaction time in terms of the tem-
perature of the shock-wave front {15, 17].

Solution of (2.8) yields

o =1—exp (— Lz), da/dx = Lexp (— Lz). (2.4)
The adiabaticderivative (8P/8a)p which enters into
(1.3) is determined from the relation
dH = VdP, V=1/p,
H=yPV/(g — 1) +q(1—a). (2.5)
Here H is the enthalpy. We thus obtain

(0P/da)e=(y —1) g/ V. (2.6)

Substituting (2.4), (2.6), and ¢? =yPV into Eq. (1.3),
and expressing u in accordance with (1.1) in terms of
jV/s, we find

v dv
(TPV r )de =
._(1’—1)qLexp(-—-Lx)-—]2:; ;l; 2.7

For Eq. (2.7) to be closed with respect to V in
(2.7) we must still express P in terms of Vand s =
= s(x). With Eqs. (1.1) and (2.5) we find

ar OV ds
Te—E+Em 2.8)

We solve (2.8) approximately by assuming the rate
of variation of s to be lower than that of V, by in-
tegrating by parts the second term in the right-hand
side of (2.8), and by taking the function of s out of the
integral at the upper limit of V. Neglecting the coun-
terpressure P; and integrating (2.8), we obtain

P=p(Vi— )+‘;‘§;: (——-1) (2.9)
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where Vj is the specific volume of the initial material
Substitution of (2.9) into (2.7) yields

Pli— o+ D+ PR -1 E =
V2 ds

= q(y—1)Lexp(— La) — L == (2.10)

s dzx

Equating the expression in brackets in (2.10) to
zero, we obtain at the Jouguet point

V= [1 == & — )|~ @A

Substituting this value of V into the right-hand side
of (2.10) and equating this side, in accordance with
(1.5), to zero, we find

(v—1)gLexp(— L) =

72 ds 22 Dis’l
De _—(T+1)5 ads (2.12)

The second equation relating D and x is derived
from (2.10) and from the Chapman-~Jouguet condition
(1.4) written in the formyPV = (jV)2/s2. Eliminating
PV from this by means of the Bernoulli equation

Ve 282 +yPV/I(y—1) —ag=Y,D? (2.13)
and using (2.11) and (2.4), we find
D4y (sE -1 =

=2(y* — 1) g1 — exp (— La)l. (2.14)

The transcendental equations (2.12) and (2.14) rep-
resent Eq. (1.8) in a parametric form (with x as pa-

‘rameter) for the steady-state detonation modes Dj.

To simplify the calculations we use the inequality
in (2.2) and substitute unity for s in (2.12) and (2.14).
With these simplifications we obtain from (2.12) and
(2.14).

D2 1 . dap

e P A R (2.15)

If d = », Eq. (2.15) yields the known relationship
between D and g for detonation in an unbounded gas-
eous medium. The number of solutions of Eq. (2.15)
can vary depending on the diameter d and the form of
the function L(D).

It can be shown that a function of the kind (1.6),
which defines stability of the mode is for the model
congidered here, of the form

D) =1/(14+k) —D*/2g(y2 —1). (2.16)

Let us consider the case in which the dependence of
1, on the temperature of the shock-wave front is sub-
ject to a law similar to that of Arrhenius :

L = 4 exp (— pE / RT), (2.17)

where A is a constant preexponential factor, E is the
specific activation energy, u is the molecular weight,
and R is the gas constant. Equation (2.15) is now
transformed to



y=1-+Aexp(my)=1-+%

< =20 —=he 5 _ _ dep
¥ pr AdGx+D (2.18)
_ 1E
"= (72—1)(7—1)q>'

Expression (2.18) was derived with consideration
of relationship RT = ¢y ~1)pD/2y for a strong shock
wave in gases.

The dependence of 1/1 +k) on 1/ for m =2 and
A =0.01, 0.024, and 0.06 is shown in Fig. 2, where
steady-state detonation modes are indicated by - and
x. Modes indicated by - are stable, while those indi-
cated by x are unstable. The dashed extension of
curves shown in Fig. 2 was constructed with the gen-
eral property of (1.7) taken into account.

With increasing A, i.e., with a decreasing charge
diameter, the adjacent upper points converge, and for
A = Ak = 0.024 they merge into a single point (Fig. 2).
The critical diameter di of the charge corresponds to
Ax- There is only one solution when d < dj (for a weak
detonation wave). Its physical meaning is discussed
in §3.

The value of A is determined by the condition of
tangency of the lines l/y‘ and (1 + k). If the diameter
for the mode Dj is equal to the critical diameter, not
only the function f(D) but also its derivative vanish at
the point Dy. This is precisely the exceptional case
in which (1.14) is not fulfilled.

From the tangency condition it follows that m}\k X
x exp (1 + m) =1. A stable mode with a2 minimum D;
exists when A )A min, i.e., in a range of charge
diameters not exceeding a certain critical value of
dpax- The quantity Ay,i, is defined by the condition
of tangency of the straight line 1/y to the dashed curve
‘(Fig. 2). However, this guantity cannot be calculated
for the model considered here.

We now turn to the case of two exothermic reactions
occurring at different rates. This case merits special
congideration, since it is directly related to the well-
known phenomenon of a low rate of detonation. Let the

. chemical reaction kinetics be defined, similarly to
-{2.3), by equations

da/dz:Ll(i—OC),
dp/dr =Ly (1 —§), a(0) =4 (0) =0

The functions Ly and L, are dependent on D. We
denote the heats of the irreversible chemical re-
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actions by gy and q,, respectively.

The most interesting case is that of a fast reaction
characterized by low heat release. Such a relation-
ship between the rate and the heat of a reaction occurs,
for example, when the firgt reaction develops in the
inhomogeneities of the material, while the second
does so throughout the volume of the compressed
material. Accordingly, we assume

Li> Ly, <. (2.19}

Generally speaking, in the case of two reactions
the system of equations of the type (2.12) and (2.14)
does not reduce to an equation of the type (2.15). How-
ever, if conditions (2.19) and 14qy > Lygy are fulfilled
(it is sufficient for this inequality to be fulfilled for
D?« 26y% ~1) q;), a single equation

1 _ . Q 1—Q _

v oI E TiTR =5

day? — N .
i ¢ =g 612

k= {2.20)
is obtained for D.

The function f(D), is similar to (2.16), of the
form

1dD) =z —1/y.

The results of calculation of the left-hand and
right-hand sides of Eq. (2.20) are shown in Fig. 3 for
the case of an exponential dependence of 1, and L, sim-
ilar to (2.17) and (2.18) with the same relationship be-
tween the activation energy E; and the reaction heat g;.

ky = M exp (Omy), ky =k exp [(1 — Q) my)]

forQ=0.2, m=3,andA=10"%,5-107,5-107%,107% and
2 -107%, In addition to the modes existing in the case
of a single reaction (Fig. 2) in the interval 5-10-3 >
A > 5°107%, i.e., within a certain range of charge
diameters, there exists one more stable detonation
mode.

§3. Depending on the charge diameter, one or
three steady-state detonation modes can exist in the
case of a single irreversible reaction. Three det-
onation modes (two stable, one unstable) exist within a
certain range A of diameters bounded from above and
below. Beyond the limits of A only one mode Dyyip
exists for smaller diameters. Similarly, there exists
only one mode Dyyax for larger diameters. Thus, the

s
Nya
i
Vi <

|

A

Fig. 8
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modes Dpyin and Dy, are limited by the critical
diameters from above and below, respectively. At
the limit A =0 both critical diameters coincide. If
there are no other parameters, except d, which would

make possible variation of the function f (D), the prob-

ability of A =0 is nil.

The modes Dy, i, and Dmax are stable. The origin
and stability of the mode Dy,jn are related to the
natural strength of the material or to the presence of
a container. In an unperturbed material the rate of
Dynin is close to the speed of sound. If the material
is homogeneous, the temperature of the shock wave
initiating a chemical reaction in the Dymipn mode is
close to the temperature in front of the wave. It
follows from this that with an explosive suitable for
any extended storage the width of the reaction zone of
the mode D,yip In a charge without a casing is very
great, and because of this a steady-state mode can
prove to be unattainable in laboratory conditons. More-
over, in a very slow reaction stability of the mode
can be disturbed by heat conduction through a lateral
surface of the charge [4]. )

If the charge is encased in a casing, an increase
in the strength of the latter increases the rate of
Dmin» while even in a homogeneous medium the width
of the reaction zone can decrease to dimensions
acceptable under laboratory conditions. In this case
it will be possible to detect the mode Dy, provided
that the charge diameter has not yet exceeded its
critical value.

Two detonation modes in a bounded medium were
obtained by Evans [15]. Both modes (which we shall
denote by D, and D; in the order of increasing rate)
were derived in [15] by equating the width £ of the re-
action zone, obtained from the theory of gasdynamics
[14, 22, 26] to the function £(D) applicable to the model
of reaction kinetics considered in [15]. The modes D,
and Dy exist only when d >dj (dy is the critical diame-
ter), and the rate of D, decreases with increasing d.
It was assumed in [15] that in certain cases D, is re-
lated to the modes detected experimentally. Results
approximately similar to those of [15] are cited in
[14]. However, it will be seen readily that D, and D;
in [15] are nothing else than two of the three "upper”
modes occurring in a single irreversible chemical
reaction within the interval A of diameters. Since
in that case the mode D, is unstable, it cannot be de-
tected as a steady-state one. With increasing d the
mode D, vanishes together with the mode Dmin,
leaving only the mode Dy,5%- The only mode which
can correspond to a low detonation rate in a single
chemical reaction is Dy jn- The magnitude of Dy,
unlike D;, does not decrease with increasing charge
diameter. It can increase or remain nearly constant.
These general statements are illustrated by calcu-
lations performed for a specific model of a chemical
reaction (Fig. 2).
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In the case of two chemical reactions occurring
at two substantially different rates, two more modes
appear together with the three considered here.

In this case the function f(D) has four extrema; namely two
minima and two maxima. The coincidence of any of these extrema
with the point D; of the steady-state mode (1.8) can be achieved by
our varying the parameter d on which f(D) is dependent. Four critical
diameters correspond to the four such coincidences shown in Fig, 4.

If equality of any two of the critical diameters is excluded as
improbable, it is possible to prove that with conditions (2.19) and diL;
<« qgl, fulfilled there are five possibilities of emergence and disap-
pearance of five modes for change in d. We number the D; in an in-
creasing sequence by 1,2,3,4, and 5 (Fig. 2). We denote the occur~-
rence of a single first mode by 1 the first, second, and third modes by
1, 2, 8, and so on. The five possible sequences of emergence and
disappearance of modes with increasing d will be denoted as follows:
(a) 1, 123, 3, 345, 5,; (b) 1, 123, 12345, 345, 5,; (c) 1, 123,12345,
125, 5,; (d) 1, 145, 12345, 345, 5; (e) 1, 145, 12345, 125, 5,. Un-
stable modes are denoted here by even numbers (2 and 4), and commas
correspond to critical diameters. The sequence (a), for example, in-
dicates that within the range Ds. .of diameters there is a single mode 1,
in the range d;~d; — three modes 123, in the range dy=—dz—-d,~—three
modes 345, and in the range d4~—~one mode 5. Cases of occurrence
of modes 145, 12345, and 125 are shown in Fig. 5. _

Not more than two steady-state modes, i.e., 1 and 3 and 5, can
be detected in experiments with any charge diameter and the sequence
(a). In the case of the four remaining sequences three steady-state
modes, namely 1, 3, and 5 can be detected in a certain range of di-
ameters, depending on the manner of initiation.

We note that for the sequence (a) mode 3 can in ap experiment
be erroneously taken for mode 5. The essential difference between
these two is that while the rate of mode 5 increases smoothly to its
asymptotic value with increasing d, that of mode 3 vanishes for d =
= dy, and the rate of Dy changes stepwise up to —d, In this context
more detailed experimental investigations of detonation of explosive
mixtures of the kind considered in [28] are of interest.

The functional relationships described are in qualitative agree-
ment with experimental data on the low rate of detonation and on its
dependence on the charge diameter {5, 8§~12]. Mode 3 is probably
detected as a mode with a low rate of detonation in many experiments
with charges without casings. In experiments described in [12] modes
of types 1, 3, and & were apparektly achieved.

Data obtained by Cook [5] as regards the relation between the
low rate of detonation in gelatins and the extent of saturation of them
by air can be explained qualitatively on the basis of our analysis as
follows. In the absence of gas bubbles the fast reaction phase is also
absent; if the number of bubbles is very great, there is a fast reaction
phase but almost all its heat is released. Lastly, with a small number
of bubbles, conditions similar to (2.19) obtain, and in this case a
steady-state mode at a low rate becomes possible.

Within the framework of our analysis all critical
diameters, except the minimum one, can be derived

Fig. 4
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for a given a (or, generally, for a given shape of the
streamtube) and a known reaction mechanism.

Allowance in a stationary mode for any weak de-
pendence of the streamtube form on D leads to a
small quantitative, but not qualitative, alteration of
the results. It is not, however, excluded that certain
interesting results, in particular for diameters close
to critical ones, can be brought to light by a more rig-
orous solution of the system of equations of gasdy-
namics and chemical reaction kinetics.
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