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It was shown in [1] that in the presence of nonmonotonic heat 
release the detonation mode in an unbounded medium can be inde- 
terminate. Certain properties of the number of detonation modes and 
their stability with respect to transition from one mode to another were 
also investigated there. 

The lateral scattering of products of detonation affects the let- 
ter's rate in a manner qualitatively similar to that of heat losses or of 
an endothermic reaction. Noting this similarity and the results cited 
in [1], we consider the case of monotonic heat release on the assump- 
tion that lateral scattering is the only source of losses. 

The effect of lateral scattering on the rate and stability of det- 
onation, as well as the existence of a critical diameter of the charge, 
was first confirmed experimentally by Khariton and Ro~ing [2, 8]. The' 
critical diameter and its dependence on specific properties of an ex- 
plosive were subsequently investigated in numerous papers (see [4, 7] 
and other publications). Another interesting aspect of the link between 
the stability of detonation and the scattering of reaction products is 
the low detonation rate observed under certain conditions [4, 5 ,8 -12] .  
This phenomenon has not yet been fully explained. There is no doubt 
that the low detonation rate is, if not in all cases at least in the ma-  
jority of them related to two or more heat-release stages taking place 
at substantially different rates [5,10-13].  However, the question of 
the character and limits of stability as well as of the low sensitivity of 
the detonation rate to variation in external parameters [10, 11] re- 
mains unanswered. Attempts at a theoretical explanation of the low 
detonation rate were made by Eyring et al [14], but their results con- 
tradict experimental data [11, 12] (see also w below, and [18]). The 
problem of indeterminacy of the detonation rate has been partially 
considered by Schall [16]. A critical review of [16] appears in [1]. 

In connection with all this it is interesting to investigate the 
total number of detonation modes and their stability during transition 
from one mode to another. In view of the recently revealed instability 
of a plane (smooth) detonation front [17], we point out that in the 
following we consider the stability of any detonation front which is 
steady-state on the average. The detonation rate, expressed in terms 
of the heat of reaction, is the same as that of a smooth front. It is 
known.that "turbulent pulsations" of  an uneven front alter the deto- 
nation rate only very slightly [18,19], and that such alterations are 
not always present [20]. Unevenness of the front also does not con- 
tradict the concept presented in [3] of a relation between the crit- 
ical diameter and the width of the reaction zone [6, 7]. The quan- 
titative expression of the criterion given in [8] depends on specific 
properties of the explosive. In the ease of high activation energy the 
induction time for large diameters close to the critical one increases 
very greatly in the direction from the charge axis toward its periphery, 
owing to considerable curvature of the front. Under these conditions 
the effective induction time can be considerably longer than for a 
straight shock wave [21]. 

The problem is formulated in an approximation to a given 

streamtube shape in w which also deals with investigation of the 
general properties of detonation modes in a bounded medium. These 
properties are illustrated in w for a simple model of detonation with 
one or two irreversible chemical reactions. Section 3 is devoted to 
discussion of the results and to the conclusions. 

Systematic mathematical analysis of detonation with lateral 
scattering is extremely difficult. This explains the present lack of a 
rigorous theory for non-one-dimension detonation, in spite of num- 
erous investigations of this problem. Several existing approximate 
theories [14, 22-28] give a qualitatively correct description of in- 
crease in the detonation rate with increasing diameter of a cylindrical 
charge or with decreasing front curvature [26]. 

However, knowledge of the exact pattern of expansion of the 
explosive in the reaction zone is not necessary for the analysis of the 
number of modes and their stability. The mode and stability of de- 
tonation depend on the relationship between the rate of expansion 
and that of the chemical reaction. Both of these rates are defined 
for a given'charge diameter by the shock-wave intensity and by the 
complete range of gas-dynnmie parameters behind the compression 
shock. The rate of a chemical reaction is usually much more af- 
fected by the shock-wave intensity than by the effect of lateral 
scattering. Consequently, in investigations of the number of deto- 
nation modes and of their stability, it is natural to consider the 
expansion law (the shape of the streamtubes) as given and independent 
of the wave intensity, except in the case of weak waves (see below). 
Any relatively minor dependence of the streamtube form on the wave 
intensity result only in a small variation of the detonation rate, while 
the functional relationships remain qualitatively unchanged. 

w Let us consider a detonation process in an in- 

finitely long cylindrical charge and assume that the 

streamtube cross section (~ is a given function of the 
distance x from the shock-wave front initiating the 

detonation. 
With other conditions equal, the velocity of a det- 

onation wave is the higher, the greater is the heat 
release and the smaller the losses from lateral scat- 

tering in the subsonic zone of flow. In this respect the 

above phenomenon is similar to the detonation process 

in the unbounded medium in the presence of a nonmon- 

otonic chemical reaction. However, this problem dif- 
fers significantly in that it results in non-one-dimen- 

sional motion, and this leads to a different expression 

of the laws of conservation. In particular, the part- 

icle traj ectory in a steady-state shock wave in the 
pressure-volume plane is no longer defined by the 

Michelson straight line, and the detonation-wave vel- 

ocity cannot be determined from the known condition 

of tangency to the adiabatic curve of maximum heat 

release by the detonation. For the same reasons los- 
ses due to lateral scattering do not result in any ap- 
preciable heat losses. 

Nevertheless, continuous functionf(D) of the shock- 
wave velocity can be introduced, as in [i], for a 

bounded medium. When equal to zero, this function 

defines the velocities D i of steady-state modes, and 
when different from zero, it indicates the direction of 
development of the nonsteady-state process. To prove 

this we consider a continuity equation together with 
an Euler equation for steady-state motion in a system 
of the wave-front coordinates 

Dpr = ups __= ] = const ,  

u d u / d x  = ~ d P / p d x ,  s ~ ~ (x) / g (0). (1.1) 

H e r e  D a n d  u a r e ,  r e s p e c t i v e l y ,  t h e  g a s  v e l o c i t i e s  

in  f r o n t  of a n d  b e h i n d  t h e  w a v e  (D i s  t h e  d e t o n a t i o n -  

w a v e  v e l o c i t y  in  a l a b o r a t o r y  s y s t e m  of  c o o r d i n a t e s ) ,  
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Pl a n d  P2 a r e  t h e  g a s  d e n s i t i e s  in  f r o n t  of a n d  b e h i n d  

t h e  w a v e ,  a n d  P i s  t h e  p r e s s u r e .  We a s s u m e  t h e  g a s  
m o t i o n  to b e  a d i a b a t i c  [4]. 

We d e n o t e  by  c~q(0 <_ ~ _< 1), t h a t  p a r t  of t h e  h e a t  q 

r e l e a s e d  d u r i n g  a n  i r r e v e r s i b l e  c h e m i c a l  r e a c t i o n  up  

to  a g i v e n  i n s t a n t  of t i m e ,  a n d  we  r e p r e s e n t  p r e s s u r e  

v a r i a t i o n  i n  a n  a d i a b a t i c  p r o c e s s  w i t h  a n  i r r e v e r s i b l e  

c h e m i c a l  r e a c t i o n  in  t he  f o r m  

dP = c2dp zc (OP / aa)p da ,  (1.2) 

w h e r e  c i s  t he  s p e e d  of s o u n d  u n d e r  c o n d i t i o n s  of  a 

f r o z e n  i r r e v e r s i b l e  r e a c t i o n .  

C o m b i n i n g  (1.1) a n d  (1.2),  we  o b t a i n  

(u~"--c~-)p3~, -~ \O~/p dx ~ x "  (1.3) 

F o r  a d e t o n a t i o n  p r o c e s s  to  b e  s t e a d y  t h e  r i g h t -  

h a n d  s i d e  of  Eq .  (1.3),  s u b s e q u e n t l y  d e n o t e d  b y e ,  

m u s t ,  a t  t h e  J o u g u e t  p o i n t  

u = c (1.4) 

s a t i s f y  t h e  e q u a t i o n  

= 0 (1.5) 

E q u a t i o n s  (1.4) a n d  (1.5) d e f i n e  t h e  v e l o c i t y  D of a 
s e l f - s u s t a i n i n g  d e t o n a t i o n  w a v e .  E q u a t i o n  (1.5) w i t h  

Eq.  (1.4) i s  u s u a l l y  f o r m u l a t e d  a s  t h e  c o n d i t i o n  f o r  
c o m p e n s a t i o n  of p r e s s u r e  i n c r e a s e  d u r i n g  t h e  r e -  

a c t i o n  b y  d e c r e a s e  w i t h  l a t e r a l  s c a t t e r i n g  a t  t h e  J o u -  

g u e t  p o i n t  [5, 14]. F o r  a d e t o n a t i o n  i n  a n  u n b o u n d e d  

m e d i u m  the  r e l a t i o n  d s / d x  = 0 a n d  t h e  s i m u l t a n e o u s  
f u l f i l l m e n t  of E q s .  (1.4) a n d  (1.5) i n d i c a t e s  t he  k n o w n  

c o n d i t i o n  f o r  c o m p l e t i o n  a t  t h e  J o u g u e t  p o i n t  of a n  

i r r e v e r s i b l e  m o n o t o n i c  r e a c t i o n  (or  t h e  m a x i m u m  
h e a t  r e l e a s e  in  a n o n m o n o t o n i c  r e a c t i o n )  [4, 27].  

We  i n t r o d u c e  i n to  o u r  a n a l y s i s  t h e  f o l l o w i n g  f u n c -  

t i o n  of t h e  s h o c k - w a v e  v e l o c i t y :  

= I /OP\ da ~ ds 
] (D) V / ~ - ) p  ~ - -  c~ sd--~] . . . .  ' (1.6) 

H e r e  x 0 i s  a q u a n t i t y  d e p e n d e n t  on  D a n d  equa l  to  

t h e  s m a l l e s t  of t h e  two v a l u e s  of x l  a n d  x 2, d e f i n e d  a s  

f o l l o w s :  x 1 i s  t h e  p o i n t  x __ 0 a t  w h i c h  u = c ; x 2 i s  t h e  
p o i n t  c o r r e s p o n d i n g  to t h e  s m a l l e s t  x _> 0 a t  w h i c h  r  

0, a n d  s u c h  t h a t  r < 0 w h e n  x 2 (if t h e  p o i n t  x 1 d o e s  no t  

e x i s t ,  b y  d e f i n i t i o n  x0 = x z ; i f  $ -< 0 f o r  a l l  x >_ 0, o b -  

v i o u s l y ,  x0 = 0). 

Function (1.6) exists and can be determined for any D and a 
given law s(x) of streammbe expansion by our solving the Cauchy 
problem for the system of ordinary differential equations (1.1), which 
must be supplemented by equations of adiabaticiry (or by the Ber- 
noulli equation) and of chemical kinetics. By virtue of continuous 
dependence of the solution of the Cauchy problem on the initial 
conditions, this function is continuous and has everywhere a first der- 
ivative, except at points of transition from x 0 = x~ to x 0 = xz. At 
these points f(D) has breaks and, consequently, two derivatives: f "  
and f+. 

A property off(D) at small D close to the speed of sound in an 
unperturbed gas should be noted. In this region the streamtube shape 
cannot be considered in any approximation as independent of D, if a 
correct picture of the flow is to be obtained. This is so because a 
streamtube which has passed through the maximum pressure of the 
sonic perturbation front does not expand at alI. In sokids this is due 
to the natural strength of the material, and in liquids and gases to 
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constraints imposed in experiments by the containers. Moreover, 
under certain conditions the dynamic resistance of a liquid can have 
a similar effect. In an infinitely weak wave the sonic point is reached 
for infinitely low expansion existing behind the leading edge, i . e . ,  
as we see from (1.8) infinitely small heat release so that a chemicat 
reaction at the sonic point does not result in lateral scattering of 
material. Thus, in the region of reduced pressure we have for the 
chemical peak of a weak detonation wave ds/dx -< 0, while in the 
case of an irreversible chemical reaction da/dx is positive. Hence, 
if heat conduction and friction at the wails are neglected, at the 
weak wave limit we have 

/ (D) > 0. (1.7) 

If c o n d i t i o n s  (1.4) a n d  (1.5) a r e  f u l f i l l e d  s i m u l t a n -  

e o u s l y  

/ (D) = 0, (1.8) 

and ,  c o n v e r s e l y ,  i f  c o n d i t i o n  (1.8) i s  f u l f i l l e d ,  f r o m  

t h e  d e f i n i t i o n  of f (D)  a n d  f r o m  (1.3) i t  f o l l o w s  t h a t  ( ! .4)  
a n d  (1.5) a r e  v a l i d  a t  t h e  p o i n t  x 0. C o n s e q u e n t l y ,  Eq .  
(1.8) d e f i n e s  t h e  p a r a m e t e r  D of s t e a d y - s t a t e  d e t -  

o n a t i o n m o d e s ,  w h o s e  n u m b e r  i s  e q u a l  to  t h e  n u m b e r  of 
p o s i t i v e  r e a l  r o o t s  D of Eq .  (1.8) .  

We s h a l l  c l a r i f y  t h e  r e l a t i o n  b e t w e e n  f (D) a n d  t h e  

s t a b i l i t y  of s t e a d y - s t a t e  m o d e s .  L e t  t h e r e  b e  a c e r -  

t a i n  s t e a d y - s t a t e  m o d e  D i .  To  i n v e s t i g a t e  i t s  s t a b i l -  

i t y  we  a s s u m e  t h a t  owing  to  r a n d o m  p e r t u r b a t i o n  t he  

s h o c k - w a v e  i n t e n s i t y  i s  i n c r e a s e d  b y  a s m a l l  i n c r e -  
m e n t  5D > 0, a n d  t h a t  t h e  s t a t e  of t h e  g a s  in  t he  i n -  

t e r v a l  0_< x _< x0 h a s  c h a n g e d  c o r r e s p o n d i n g l y ,  so  

t h a t  i n  t h i s  i n t e r v a l  Eq .  (1.3) i s  f u l f i l l e d ,  w h i l e  in  t h e  

r e m a i n i n g  r e g i o n  x > x0, t he  s t a t e  of g a s  a t  t h e  i n s t a n t  
of t h i s  p e r t u r b a t i o n  h a s  no t  c h a n g e d .  T h e  new v a l u e  of 

D = D i + 6 D wi l l  no t ,  g e n e r a l l y ,  b e  a r o o t  of Eq .  (1.8),  

i . e . ,  

/ (D~ + 6D) # 0. (1.9) 

T h i s  m e a n s  t h a t  on ly  one  of c o n d i t i o n s  (1.4) a n d  

(1.5) i s  f u l f i l l e d  a t  p o i n t  x 0, a n d  t h a t  i 0 i s  e q u a l t o  e i t h e r  
x 1 o r  x 2. 

If x0 = xi ,  x0 i s  t h e  J o u g u e t  p o i n t  a t  w h i c h  w i t h  c o n -  
d i t i o n  (1.9) f u l f i l l e d  w e  h a v e  

> 0 (1.10) 

F r o m  (1.4) a n d  (1.5) i t  a l s o  f o l l o w s  t h a t  

J (D~ ~- 5 D) > 0. (1.11) 

I n e q u a l i t y  (1.10) m e a n s  t h a t  a t  t h e  J o u g u e t  p o i n t  i s  

r e l e a s e d  a t  a h i g h e r  r a t e  t h a n  t h a t  r e q u i r e d  to  s u s -  

t a i n  s t e a d y - s t a t e  m o d e  D i + 6D, a s  a r e s u l t  of w h i c h  
t h e  w a v e  w i l l  b e  i n t e n s i f i e d  [1]. (In t h i s  c a s e  a s t e a d y -  
s t a t e  s o l u t i o n  a t  t h e  p o i n t  x0 c o n t r a d i c t s  i r r e v e r s i b i l -  
i t y  of t h e  c h e m i c a l  r e a c t i o n .  A d e t a i l e d  g a s d y n a m i c  
p a t t e r n  of t h e  i n t e n s i f i c a t i o n  of p e r t u r b a t i o n s  i s  no t  

c o n s i d e r e d  h e r e ) .  T h u s ,  in  t h e  c a s e  of (1.11) t h e  p e r -  

t u r b a t i o n  of a s t e a d y - s t a t e  m o d e  i s  i n t e n s i f i e d .  
If w i t h  c o n d i t i o n  (1.9) f u l f i l l e d ,  we  h a v e  x0 = x2, r e -  

l a t i o n  (1.5) i s  v a l i d  a t  p o i n t  x0, b u t  c > u ,  h e n c e  

/ (D t _L 6 D) ~ 0.  (1.12) 

We s e e  f r o m  Eq .  (1.3) t h a t  in  t h i s  c a s e  t he  m a t e r -  
i a l  is  b e i n g  c o m p r e s s e d  ( d p / d x  > 0) in  t h e  s u b s o n i c  
p a r t  of t h e  r e g i o n  x > x0. H e n c e  f r o m  t h e  f i r s t  e x -  



p r e s s i o n  of (1.1) and f r o m  the  c o n d i t i o n  of s t r e a m -  

tube  e x p a n s i o n  i t  f o l l o w s  tha t  u2 d e c r e a s e s  wi th  i n -  

c r e a s i n g  x a t  a r a t e  m o r e  r a p i d  than  1 /p  2. T h e r e f o r e ,  

f o r  a s t e a d y - s t a t e  f low to b e c o m e  son i c  o r  s u p e r s o n i c  
wi th  i n c r e a s i n g  x an  e v e n  m o r e  r a p i d  r a t e  of d e c r e a s e  

of c2 i s  a l w a y s  n e c e s s a r y ,  so  tha t  in  t he  a d i a b a t i c  p r o -  

c e s s  O(p2c2)/Op < 0. Ye t  f o r  a l l  m a t e r i a l s  c a p a b l e  of 
p r o p a g a t i n g  c o m p r e s s i o n  s h o c k  w a v e s  0(p2c2)/~ p < 0. 
Th is  d e r i v a t i v e  i s  of t he  s a m e  s i g n  a s  the  s e c o n d  a d i -  
a b a t i c  d e r i v a t i v e  of 1/p {used in the  t h e o r y  of  s h o c k  
w a v e s )  w i th  r e s p e c t  to p r e s s u r e .  

Thus  f o r  D = D i + 5D s t e a d y - s t a t e  f low is  s u b s o n i c  
t h r o u g h o u t  and d o e s  no t  s a t i s f y  the  c o n d i t i o n  f o r  v a c -  

u u m  at  x = ~ .  In a p e r t u r b e d  m o d e  the  t r a n s i t i o n  to 

v a c u u m  o c c u r s  in the  n o n - s t e a d y - s t a t e  r a r e f a c t i o n  
w a v e  which  in  p r o p a g a t i n g  t h r o u g h  the  s u b s o n i c  f low,  

o v e r t a k e s  the  f ron t ,  and w e a k e n s  i t .  Such p e r t u r b e d  

m o t i o n  is  a s u p e r c o m p r e s s e d  d e t o n a t i o n  w a v e  [4]. In 
o t h e r  w o r d s ,  the  g e n e r a t e d  p e r t u r b a t i o n  6D > 0 is  a t -  
t e n u a t e d  w h e n  c o n d i t i o n  (1.12) i s  f u l f i l l e d .  It c a n  be  
shown in a s i m i l a r  m a n n e r  tha t  a p e r t u r b a t i o n  of  

o p p o s i t e  s i g n  (SD > 0) is  i n t e n s i f i e d  in the  c a s e  of (1.12) 
and i s  a t t e n u t a t e d  in t he  c a s e  of  {1.11). 

The  s t a b i l i t y  c o n d i t i o n  ob t a ined  is  e x p r e s s e d  in a 
m o r e  c o n c i s e  f o r m  (unique f o r  any s i g n  of 6D) a s  
f o l l o w s .  A d e t o n a t i o n  w a v e  p r o p a g a t i n g  a t  the  v e l o c i t y  

D i i s  s t a b l e  (as r e g a r d s  t r a n s i t i o n  in to  a n o t h e r  s t e a d y -  
s t a t e  mode )  wi th  r e s p e c t  to s m a l l  p e r t u r b a t i o n s ,  i f  

(d] / dO) • ~ O, D = D~, (1.13) 

and i t  i s  u n s t a b l e  when  the  s i g n  of i n e q u a l i t y  (1.13) i s  
r e v e r s e d .  

The two derivatives at the points D i are of the same sign. In 
fact, if the function f(D) with a break at the point D i changes its 
sign when passing through that point, the derivatives f "  and f$ 
will be of the same sign. If, however, f(D) does not change its sign, 
x 0 is one and the same differentiable function of D (x I or x~) on both 
sides of D i, and, consequently, the function f(D) does not have a 
break at the point D i. In the following analysis it is not the absolute 
values off(D) for all D that are important, but rather its continuity, 
its vanishing at points (1.8), and the sign of its derivatives at these 
points. The selection of a function with such properties is nonunique. 
The function ~f(D), where ~ is any continuous piecewise differen- 
tiable positive function of D, can be taken as f(D). The derivative 
of xf(D) can be made unique at the points D i by a suitable selection 
of u. No distinction wili, therefore, be made in the following between 
f ;  and f+ ,  and f(D) will be represented in all diagrams by a smooth 
curve. 

The  f a c t  tha t  c r i t e r i o n  (1.13) was  d e r i v e d  in the  
a n a l y s i s  of a s p e c i a l  k ind of p e r t u r b a t i o n s  i s  i m -  
m a t e r i a l  and does  not  l i m i t  the  g e n e r a l i t y  of (1.13) 
( see  w of [1]). 

We sha l l  p r o v e  two s t a t e m e n t s  d e f i n i n g  the  p r o p -  
e r t i e s  of s o l u t i o n s  of  (1.8). 

1) L e t  at the  po in t s  D i s a t i s f y i n g  {1.8) 

dl / dD =i= O. (1.14) 

We a l s o  a s s u m e  tha t  the  t h e r m o d y n a m i c  func t ions  
of the  r e a c t i n g  m a t e r i a l  do not  h a v e  s i n g u l a r i t i e s  
l e a d i n g  to b r e a k s  of t he  d e t o n a t i o n  a d i a b a t i c  c u r v e .  
We p r o v e  tha t  t he  m a x i m u m  D m a  x and the  m i n i m u m  

D m i n  r o o t s  of Eq .  (1.8) d e s c r i b e  m o d e s  which  a r e  

s t a b l e  as  r e g a r d s  t r a n s i t i o n  to o t h e r  m o d e s  (1.8). The  

p r o o f  of s t a b i l i t y  of t he  m o d e  D m a  x is  d e r i v e d  by c o n -  

t r a d i c t i o n ,  a s  was  done  in [1]. L e t  us  a s s u m e  tha t  t he  

s o l u t i o n  Dma  x is u n s t a b l e ,  i . e . ,  tha t  a t  the  po in t  D i 
the  c o n v e r s e  of i n e q u a l i t y  (1.13) ho lds .  T h i s  m e a n s  
tha t  f o r  s m a l l  p o s i t i v e  i n c r e m e n t s  of 5D 

f ( D ) ~  O. (1.15) 

Yet d~/dx remains finite with unlimited increase of 

D, while c2ds/sdx increases infinitely. (This state- 
ment is meaningless, if ds = 0 is assumed a priori an 
unbounded medium). Passage to the limit of an un- 

bounded medium can be achieved with a nonunique 

definition of the functionf(D) and by our multiplying 
the latter by sdx/ds. However, this is unnecessary, 

since the stability of Dma x is an unbounded medium 
was proved in [I]). Hence it follows that for rather 
large D > Dma x the inequality sign in (1.15) is re- 
versed (a detonation wave as D ~o necessarily be- 
comes supercompressed). By virtue of the contin- 

uity of f(D) this feature proves the existence of a sol- 

ution of (1.8) for D > Dma x. This contradicts initial 
conditon and proves the stability of the mode Dmax. 

The stability of the mode Dmin is proved in a sim- 
ilar manner, if property (1.7) of the function f(D) for 
small D is taken into account. 

2) An opposite kind of stability corresponds to the 
two adjacent roots D i and D i + i of Eq. (1.8)with lim- 
itation (1.14), i.e., if the mode at the point D i is un- 
stable (stable) it is stable (unstable) atthe point D i + I. 

This property of solutions of (1.8) follows immediately 
from criterion (1.13), and from the continuity and 
single-valuedness of the function f(D) (Fig. !). 

From the properties defined in I) and 2) together 
with the same nonessential limitation (1.14) follows 
that: a) Eq. (1.8) with property (1.7) taken into account 
has an odd number of solutions; b) is the soiution of 
(1.8) is unique, it is stable; c) if there are three sol- 
utions, the solutions with maximum and minimum D i 
are stable, while the third solution is unstable; if 
there are five solutions in all, three of these are 
stable. 

These properties of solutions of (1.8) formally 
coincide in accuracy with the properties of steady- 
state modes in an unbounded medium in the presence 

of nonmonotonic heat release [1]. However, here these 
properties, and in particular those of Drain, are ef a 
different physical nature (see the discussion in w 

w 2. Let us consider quantitatively two simple models 
of detonation with one and two different rates of heat 

release, and with lateral scattering taken into consid- 
eration. We assume, in [22], that there is little 
streamtube expansion in the steady-state subsonic 

It' 
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r eg ion .  In th is  a p p r o x i m a t i o n ,  which wil l  be used  
f r o m  f o r m u l a  (2.9) onward,  the s t r e a m t u b e  r a d i u s  r ,  
equal  p r i o r  to expans ion  to the c h a r g e  r a d i u s  r0, is  
p r o p o r t i o n a l  to x 

r / ro = t ~ ax / d, (2.1) 

d --~ 2r0, a = const, ax 0 / d ~ i .  (2.2) 

(It i s  c l e a r  a p r i o r i  that  inequa l i ty  (2.2) is  a l l  the  
b e t t e r  fu l f i l led  the l a r g e r  i s  d. It can  be p roved  by 
m e a n s  of the so lu t ions  to be d e r i v e d  l a t e r ,  tha t  i t  i s  
p e r m i s s i b l e  to u se  (2.2) fo r  d d e c r e a s i n g  down to the  
c r i t i c a l  d i a m e t e r . )  F u r t h e r m o r e ,  we a s s u m e  that  the 
ad i aba t i c  exponent  T of the gas  i s  cons tan t .  

We begin  by Cons ider ing  the c a s e  of a s ing le  i r r e -  
v e r s i b l e  c h e m i c a l  r e a c t i o n  of the  m o n o m o l e c u l a r  kind, 
whose  r a t e  i s  def ined by  the equat ion 

d= / dx = L (D) (t - -  a),  

r ~--0, i > r  (2.3) 

This  equat ion,  weak ly  dependent  on D, i s  ob ta ined  
in an a p p r o x i m a t i o n  to within the m u l t i p l i e r  if the  con -  
s tan t  of the  r e a c t i o n  r a t e  depends  only on the s h o c k -  
wave  in t ens i ty .  The a s s u m p t i o n  L = L(D) c o r r e s p o n d s  
to the known concept  of induct ion t i m e  and of s u b s e -  
quent f a s t  r eac t ion ,  a s  wel l  a s  to the a p p r o x i m a t e  e x -  
p r e s s i o n  fo r  the  r e a c t i o n  t i m e  in t e r m s  of the  t e m -  
p e r a t u r e  of the shock -wave  f ron t  [15, 17]. 

Solut ion of (2.3) y i e l d s  

a - - - - t - -  exp ( - - L x ) ,  d ( z / d x . - ~ L e x p ( - - L x ) .  (2.4) 

The ad i aba t i c  d e r i v a t i v e  ( ~ P / S a ) p w h i c h  e n t e r s  into 
(1.3) i s  d e t e r m i n e d  f r o m  the r e l a t i o n  

dH = VdP, V - - l / p ,  

H = 7 P V / ( 7  - -  t) -4- q (t - - r  (2.5) 

Here  H is  the  entha lpy .  We thus obta in  

( aP / 0a)p = (7 - -  1) q / V .  (2.6) 

whe re  V1 i s  the spec i f i c  vo lume of the in i t i a l  m a t e r i a l  
Subst i tu t ion  of (2.9) into (2.7) y i e ld s  

- "  s 8 - -  2 ~ §  = 

---- q ( T - - t ) L e x p ( - - L x )  /sv: ds (2.10) 
- 8 8 d x  " 

Equat ing the e x p r e s s i o n  in b r a c k e t s  in (2.10) to 
ze ro ,  we obtain at  the  Jouguet  point  

~ - i  i - l l l ~  ,v, : 
V = ~ t ' 2 [ i - ~  2 ( T + t ) ( . ~  /3~- '~-~t  " (2.11) 

Subs t i tu t ing  th is  va lue  of V into the r i gh t -hand  s ide  
of (2.10) and equat ing th is  s ide ,  in a c c o r d a n c e  with 
(1.5), to ze ro ,  we find 

(T- -  t)  qLexp ( - -  Lx) = 

__  7 8 d s  2T 8 aDds  V" (---~-~ DSs _ (2.12) 
(T + l )  8 d 

The second  equat ion r e l a t i n g  D and x i s  d e r i v e d  
f r o m  (2.10) and f r o m  the C h a p m a n - J o u g u e t  condi t ion  
{1.4) w r i t t e n  in  the  f o r m T P V  = (jV)2/s 2. E l imina t ing  
PV f r o m  th is  by  m e a n s  of the Bernou l l i  equat ion 

J ~In / 2s~ -{- 7 P V  / (7 - -  1) - -  ctq = ~/~ D ~ (2.13) 

and us ing  (2.11) and (2.4), we find 

D 211 + 72 ( : - -  1)1 = 

= 2 (73 - -  t) q [t - -  exp ( - -  Lx)]. (2.14) 

The t r a n s c e n d e n t a l  equat ions  (2.12) and (2.14) r e p -  
r e s e n t  Eq. (1.8) in a p a r a m e t r i c  f o r m  (with x a s  p a -  

r a m e t e r )  fo r  the s t e a d y - s t a t e  de tonat ion  modes  D i. 
To s i m p l i f y  the  ca l cu l a t i ons  we use  the inequa l i ty  

in (2.2) and subs t i tu t e  uni ty  fo r  s in (2.12) and (2.14). 
With t h e s e  s i m p l i f i c a t i o n s  we obta in  f rom (2.12) and 
(2.14). 

D 8 I 4a'f  2 
2 ( ~ 8 - - 1 ) q  - -  t - - ' - ~ '  . k ~-- (T_~I)L--------- d . (2.15) 

Subs t i tu t ing  (2.4), (2.6), and c 2 = T P V  into Eq. (1.3), 
and e x p r e s s i n g  u in a c c o r d a n c e  with (1.1) in t e r m s  of 
iV/s, we f ind 

T . "8 V'z d s  = (T- -  i )  qL exp ( - -  z,x) - -  .7 ~- --~. (2.7) 

F o r  Eq. (2.7) to be c l o s e d  with r e s p e c t  to V in 
(2.7) we m u s t  s t i l l  e x p r e s s  P in t e r m s  of V and s = 
= s(x).  With Eqs .  (1.1) and (2,5) we find 

d P  f . p V  d s  
d-V = - -  ~-- -t- %T ~-~- (2.8) 

We so lve  (2.8) a p p r o x i m a t e l y  by a s s u m i n g  the r a t e  
of v a r i a t i o n  of s to be l ower  than that  of V, by i n -  
t e g r a t i n g  by p a r t s  the second  t e r m  in the r i g h t - h a n d  
s ide  of (2.8), and by tak ing  the  funct ion of s out of the 
i n t e g r a l  a t  the uppe r  l i m i t  of V. Neg lec t ing  the coun-  
t e r p r e s s u r e  P1 and i n t e g r a t i n g  (2.8), we obtain 

v l ' f - - l : ~ f l  t ) ,  (2.9) 

If d = ~r Eq. (2.15) y i e l d s  the known r e l a t i o n s h i p  
be tween  D and q fo r  de tona t ion  in an unbounded g a s -  
eous m e d i u m .  The number  of so lu t ions  of Eq. (2.15) 
can  v a r y  depending on the d i a m e t e r  d and the f o r m  of 
the funct ion L(D). 

It can  be shown that  a funct ion of the  kind (1.6), 
which  def ines  s t a b i l i t y  of the mode  i s  for  the  model  
c o n s i d e r e d  h e r e ,  of the  f o r m  

/ I (D)  = l / ( l + k ) - - D  2 / 2 q ( 7 3 -  1). (2.16) 

Le t  us  c o n s i d e r  the c a s e  in which the dependence  of 
L on the t e m p e r a t u r e  of the shock -wave  f ron t  i s  s u b -  
j ect  to a law s i m i l a r  to that  of A r r h e n i u s  

L = A e x p ( - -  F E / R T ) ,  (2.17) 

w h e r e  A is  a cons tan t  p r eexponen t i a l  f ac to r ,  E is  the  
spec i f i c  ac t iva t ion  ene rgy ,  ~ is  the m o l e c u l a r  weight ,  
and R is  the  gas  cons tan t .  Equat ion (2.15) i s  now 
t r a n s f o r m e d  to 
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y = I -~- 2, exp (my) -- t ~ -k  

2 (~2 _ l )  q 4a7  2 
Y=" D' Z =  ' Ad(?+l)  ' (2.18) 

7E \ 
m (p - -  t) (~--1) q/' 

Expres s ion  (2.18) was der ived  with cons ide ra t ion  
of r e la t ionsh ip  RT = (T -1)  ~D/2 7 for  a s t rong  shock 
wave in gases .  

The dependence of 1/(1 + k) on 1/y for m = 2 and 
= 0.01, 0.024, and 0.06 is shown in  Fig.  2, where  

s t eady - s t a t e  detonat ion modes  a re  indica ted  by �9 and 
• Modes indicated by �9 a re  s table ,  while those , indi- 
cated by • a r e  uns tab le .  The dashed extens ion  of 
cu rves  shown in Fig.  2 was cons t ruc ted  with the gen-  
e ra l  p roper ty  of (1.7) taken into account .  

With i n c r e a s i n g  ~, i . e . ,  with a d e c r e a s i n g  charge  
d iame te r ,  the ad jacent  upper  points converge ,  and for 

=- kk = 0.024 they merge  into a s ingle  point (Fig. 2). 
The c r i t i ca l  d i a m e t e r  d k of the charge  co r re sponds  to 
)~k" There  is  only one solut ion when d < d k (for a weak 
detonat ion wave). Its physica l  mean ing  is d i s cus sed  
in w 

The value of kk is  de t e rmined  by the condit ion of 
tangency of the l ines  l / y ,  and (1 + k). If the d i a m e t e r  
for  the mode D i is  equal to the c r i t i c a l  d i ame te r ,  not 
only the funct ion f(D) but a lso i ts  de r iva t ive  vanish  at 
the point D i. This  is p r e c i s e l y  the exceptional  case  
in which (1.14) is not fulf i l led.  

F r o m  the tangency  condi t ion it  follows that mh k • 
• exp (1 + m) = 1. A s table  mode with a m i n i m u m  D i 
exis ts  when h }~ rain,  i . e . ,  in a range  of charge  
d i a m e t e r s  not exceeding a c e r t a i n  c r i t i ca l  value of 
dma x. The quanti ty hmin  is defined by the condi t ion 
of tangency of the s t ra igh t  l ine  1/y to the dashed curve  
(Fig. 2). However,  this quant i ty  cannot  be ca lcula ted  
for  the model  cons ide red  here .  

We now t u r n  to the case of two exothermic  reac t ions  
o c c u r r i n g  at d i f ferent  r a t e s .  This case  m e r i t s  specia l  
cons idera t ion ,  s ince  it is d i r ec t ly  r e l a t ed  to the we l l -  
known phenomenon of a low ra te  of detonat ion.  Let the 
chemica l  r eac t ion  kinet ics  be defined, s i m i l a r l y  to 
(2.3), by equat ions 

da / dx = L l  ( l  - - a ) ,  

d~ / d .  = L2 ('l - -  ~), ~ (0) = ~ (0) = 0. 

The funct ions L 1 and L 2 a re  dependent  on D. We 
denote the heats  of the i r r e v e r s i b l e  chemical  r e -  

actions by ql and q2, respectively. 
The most interesting case is that of a fast reaction 

characterized by low heat release. Such a relation- 

ship between the rate and the heat of a reaction occurs, 

for example, when the first reaction develops in the 

inhomogeneities of the material, while the second 

does so throughout the volume of the compressed 

material. Accordingly, we assume 

L~ ~ L~, 71 ~ q~. (2.19) 

Generally speaking, in the case of two reactions 

the system of equations of the type (2.12) and (2.14) 

does not reduce to an equation of the type (2.15). How- 

ever, if conditions (2.19) and Llq I >> L2q 2 are fulfilled 
(it is sufficient for this inequality to be fulfilled for 
D 2 << 2(T 2 - I) q�94 a single equation 

v - I--WE-~ -~ _~z ,  

4a?~ ql 
k~ -- (~ + i ) ~ '  Q ~ q~ + q,' (i = t,2) (2.20) 

is obtained for D. 

The 
fo rm 

function f(D), is similar to (2.16), of the 

12(D) = z - -  i l g. 

The results of calculation of the left-hand and 

right-hand sides of Eq. (2.20) are shown in Fig. 3 for 

the case of an exponential dependence of L I and L 2 sim- 

ilar to (2.17) and (2.18) with the same relationship be- 

tween the activation energy E i and the reaction heat qi" 

kl = k exp (Qmg), k 2 = Z exp [(i - -  Q) my)] 

forQ = 0.2, m = 3, and X = 10 -4, 5 ~ 10 -4, 5 �9 10 -3, 10 -2, and 

2 �9 10 -2. In addition to the modes existing in the case 

of a single reaction (Fig~ 2) in the interval 5 �9 10 -3 > 
k > 5 "10 -4, i.e., within a certain range of charge 

diameters, there exists one more stable detonation 
mode. 

w Depending on the charge diameter, one or 

three steady-state detonation modes can exist in the 

case of a single irreversible reaction. Three det- 

onation modes (two stable, one unstable) exist within a 
certain range A of diameters bounded from above and 

below. Beyond the l imi t s  of A only one mode Dmin 
exis ts  for  s m a l l e r  d i a m e t e r s .  S imi la r ly ,  the re  exis ts  
only one mode Dma x for l a r g e r  d i a m e t e r s .  Thus,  the 

K+ 7 ~ =0,,0! ~ / 8.02# 
g 0 6  

'/, § 
Fig. 2 
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m o d e s  D m i n  a n d  D m a  x a r e  l i m i t e d  b y  t h e  c r i t i c a l  

d i a m e t e r s  f r o m  a b o v e  a n d  b e l o w ,  r e s p e c t i v e l y .  At  

t h e  l i m i t  A = 0 b o t h  c r i t i c a l  d i a m e t e r s  c o i n c i d e .  If 

t h e r e  a r e  no  o t h e r  p a r a m e t e r s ,  e x c e p t  d, w h i c h  w o u l d  

m a k e  p o s s i b l e  v a r i a t i o n  of t h e  f u n c t i o n  f (D), t h e  p r o b -  

a b i l i t y  of A = 0 is  n i l .  

T h e  m o d e s  D m i  n a n d  D m a x  a r e  s t a b l e .  T h e  o r i g i n  

a n d  s t a b i l i t y  of t h e  m o d e  D m i  n a r e  r e l a t e d  to  t h e  

n a t u r a l  s t r e n g t h  of t h e  m a t e r i a l  o r  to  t h e  p r e s e n c e  of 

a c o n t a i n e r .  In a n  u n p e r t u r b e d  m a t e r i a l  t h e  r a t e  of 

D m i n  i s  c l o s e  to  t h e  s p e e d  of s o u n d .  If t h e  m a t e r i a l  
i s  h o m o g e n e o u s ,  t h e  t e m p e r a t u r e  of t h e  s h o c k  w a v e  

i n i t i a t i n g  a C h e m i c a l  r e a c t i o n  i n  t h e  D r a i n  m o d e  i s  
c l o s e  to  t h e  t e m p e r a t u r e  in  f r o n t  of  t h e  w a v e .  It  

f o l l o w s  f r o m  t h i s  t h a t  w i t h  a n  e x p l o s i v e  s u i t a b l e  f o r  

a n y  e x t e n d e d  s t o r a g e  t h e  w i d t h  of t h e  r e a c t i o n  z o n e  of 

t h e  m o d e  D m i  n i n  a c h a r g e  w i t h o u t  a c a s i n g  i s  v e r y  
g r e a t ,  a n d  b e c a u s e  of t h i s  a s t e a d y - s t a t e  m o d e  c a n  

p r o v e  to  b e  u n a t t a i n a b l e  i n  l a b o r a t o r y  c o n d i t o n s .  M o r e -  

o v e r ,  in  a v e r y  s l o w  r e a c t i o n  s t a b i l i t y  of t h e  m o d e  

c a n  b e  d i s t u r b e d  b y  h e a t  c o n d u c t i o n  t h r o u g h  a l a t e r a l  

s u r f a c e  of t h e  c h a r g e  [4]. 

K t h e  c h a r g e  i s  e n c a s e d  in  a c a s i n g ,  a n  i n c r e a s e  

i n  t h e  s t r e n g t h  of t h e  l a t t e r  i n c r e a s e s  t h e  r a t e  of 

D m i  n ,  w h i l e  e v e n  in  a h o m o g e n e o u s  m e d i u m  t h e  w i d t h  

of t h e  r e a c t i o n  z o n e  c a n  d e c r e a s e  to  d i m e n s i o n s  

a c c e p t a b l e  u n d e r  l a b o r a t o r y  c o n d i t i o n s .  In t h i s  c a s e  

i t  w i l l  b e  p o s s i b l e  to  d e t e c t  t h e  m o d e  D m i  n,  p r o v i d e d  
t h a t  t h e  c h a r g e  d i a m e t e r  h a s  no t  y e t  e x c e e d e d  i t s  

c r i t i c a l  v a l u e .  
Two d e t o n a t i o n  m o d e s  in  a b o u n d e d  m e d i u m  w e r e  

o b t a i n e d  b y  E v a n s  [15].  B o t h  m o d e s  (wh ich  we  s h a l l  

d e n o t e  b y  D 2 a n d  Dz in  t h e  o r d e r  of i n c r e a s i n g  r a t e )  
w e r e  d e r i v e d  in  [15] b y  e q u a t i n g  t h e  w i d t h  ( of t h e  r e -  

a c t i o n  z o n e ,  o b t a i n e d  f r o m  t h e  t h e o r y  of g a s d y n a m i c s  

[14, 22, 26] to  t h e  f u n c t i o n  ~(D) a p p l i c a b l e  to  t h e  m o d e l  

of r e a c t i o n  k i n e t i c s  c o n s i d e r e d  i n  [15].  T h e  m o d e s  D 2 

a n d  D 3 e x i s t  o n l y  w h e n  d > d k (d k i s  t h e  c r i t i c a l  d i a m e -  

t e r ) ,  a n d  t h e  r a t e  of D 2 d e c r e a s e s  w i t h  i n c r e a s i n g  d. 

It w a s  a s s u m e d  i n  [15] t h a t  i n  c e r t a i n  c a s e s  D 2 i s  r e -  

l a t e d  to  t h e  m o d e s  d e t e c t e d  e x p e r i m e n t a l l y .  R e s u l t s  

a p p r o x i m a t e l y  s i m i l a r  to  t h o s e  of [15] a r e  c i t e d  i n  
[14].  H o w e v e r ,  i t  w i l l  b e  s e e n  r e a d i l y  t h a t  D z a n d  D 3 

in  [15] a r e  n o t h i n g  e l s e  t h a n  two of t h e  t h r e e  " u p p e r "  
m o d e s  o c c u r r i n g  i n  a s i n g l e  i r r e v e r s i b l e  c h e m i c a l  

r e a c t i o n  w i t h i n  t h e  i n t e r v a l  A of d i a m e t e r s .  S i n c e  
i n  t h a t  c a s e  t h e  m o d e  Dz i s  u n s t a b l e ,  i t  c a n n o t  b e  d e -  

t e c t e d  a s  a s t e a d y - s t a t e  one .  W i t h  i n c r e a s i n g  d t h e  

m o d e  D 2 v a n i s h e s  t o g e t h e r  w i t h  t h e  m o d e  Dra in ,  

l e a v i n g  o n l y  t h e  m o d e  D m a  x.  T h e  o n l y  m o d e  w h i c h  
c a n  c o r r e s p o n d  to  a low d e t o n a t i o n  r a t e  i n  a s i n g l e  

c h e m i c a l  r e a c t i o n  i s  D m i  n .  T h e  m a g n i t u d e  of D m i  n, 
u n l i k e  D z, d o e s  no t  d e c r e a s e  w i t h  i n c r e a s i n g  c h a r g e  
d i a m e t e r .  I t  c a n  i n c r e a s e  o r  r e m a i n  n e a r l y  c o n s t a n t .  

T h e s e  g e n e r a l  s t a t e m e n t s  a r e  i l l u s t r a t e d  b y  c a l c u -  
l a t i o n s  p e r f o r m e d  f o r  a s p e c i f i c  m o d e l  of a c h e m i c a l  

r e a c t i o n  (F ig .  2). 

In the case of two chemical reactions occurring 

at two substantially different rates, two more modes 

appear, together with the three considered here. 

In this case the function f(D) has four extrema; namely two 
minima and two maxima. The coincidence of any of these extrema 
with the point D i of the steady-state mode (1.8) can be achieved by 
our varying the parameter d on which f(D) is dependent. Four critical 
diameters correspond to the four such coincidences shown in Fig. 4. 

If equality of any two of the critical diameters is excluded as 
improbable, it is possible to prove that with conditions (2.19) and qlL1 
<< qsLs fulfilled there are five possibilities of emergence and disap- 
pearance of five modes for change in d. We number the D i in an in- 
creasing sequence by 1, 2, 3,4, and 5 (Fig. 2). We denote the occur- 
rence of a single first mode by 1 the first, second, and third modes by 
1, 2, 3, and so on. The five possible sequences of emergence and 
disappearance of modes with increasing d will be denoted as follows: 
(a) 1, 123, 3, 345, 5,; (b) 1, 123, 12345, 345, 5,; (c) 1, 123,12345, 
125, 5,; (d) 1, 145, 12345, 345, 5; (e) 1, 145, 12345, 125, 5, .  Un- 
stable modes are denoted here by even numbers (2 and 4), and commas 
correspond to critical diameters. The sequence (a), for example, in- 
dicates that within the range Ds. of  diameters there is a single mode 1, 
in the range dl-d z --  three modes 123, in the range ds-dz-da--three 
modes 345, and in the range d4-~--one mode 5. Cases of occurrence 
of modes 145, 12345, and 125 are shown in Fig. 5. 

Not more than two steady-state modes, i . e . ,  1 and 3 and 5, can 
be detected in experiments with any charge diameter and the sequence 
(a). In the case of the four remaining sequences three steady-state 
modes, namely 1, 3, and 5 can be detected in a certain range of di- 
ameters, depending on the manner of initiation. 

We note that for the sequence (a) mode 3 can in an experiment 
be erroneously taken for mode 5. The essential difference between 
these two is that while the rate of mode 5 increases smoothly to its 
asymptotic value with increasing d, that of mode 3 vanishes for d = 
= d 4, and the rate of I~ changes stepwise up to -d  1 In this context 
more detailed experimental investigations of detonation of explosive 
mixtures of the kind considered in [28] are of interest. 

The functional relationships described are in qualitative agree- 
ment with experimental data on the low rate of detonation and on its 
dependence on the charge diameter [5, 8-12].  Mode 3 is probably 
detected as a mode with a low rate of detonation in many experiments 
with charges without casings. In experiments described in [12] modes 
of types 1, 3, and 5 were apparently achieved. 

Data obtained by Cook [5] as regards the relation between the 
low rate of detonation in gelatins and the extent of saturation of them 
by air can be explained qualitatively on the basis of our analysis as 
follows. In the absence of gas bubbles the fast reaction phase is also 
absent; if the number of bubbles is very great, there is a fast reaction 
phase but almost all its heat is released. Lastly, with a small number 
of bubbles, conditions similar to (2.19) obtain, and in this case a 
steady-state mode at a low rate becomes possible. 

W i t h i n  the  f r a m e w o r k  of o u r  a n a l y s i s  a l l  c r i t i c a l  

d i a m e t e r s ,  e x c e p t  the  m i n i m u m  one,  c a n  be  d e r i v e d  

P 

Fig. 4 
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for  a given a (or, gene ra l ly ,  for a given shape of the 
s t reamtube)  and a known reac t ion  m e c h a n i s m .  

Allowance in a s t a t i ona ry  mode for any weak de-  
pendence of the s t r e a m t u b e  form on D leads to a 
s m a l l  quant i ta t ive ,  but not  qual i ta t ive ,  a l t e ra t ion  of 
the r e s u l t s .  It is not, however,  excluded that ce r t a in  
i n t e r e s t i ng  r e su l t s ,  in p a r t i c u l a r  for d i ame te r s  close 
to c r i t i ca l  ones,  can be brought  to light by a more  r i g -  
orous  solut ion of the sys t em of equat ions of gasdy-  
n a m i c s  and chemica l  r eac t ion  k ine t ics .  
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